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ABSTRACT

The motivating perspective of this work is that visualization is a
human endeavor as natural as human life is itself. This has pro-
found influence on the way visualization is approached as the fo-
cus shifts away from any data-centric, visualization technique- or
system-based foundations to one of human-centric visual perception,
information perception, information acquisition and learning. This
paper reports on part of a design of a visualization approach and sys-
tem for deployments in wide-scope application areas of interest and
which is guided by the Engineering Insightful Serviceable Visualiza-
tion (EISV) model and is thus in the context of this human-centric
perspective. The application areas are primarily loosely constrained
environments, that are, environments for which available techniques
such as computational modeling or fixed, location-based sensors are
ill-suited. These environments have terrain, build or other similar
features. An aerial drone-based sensor platform is proposed to sam-
ple environmental data in these environments. One of the included
sensors on this platform is a LiIDAR, a distance ranging sensor. The
visual output of the LiDAR is primarily studied in this paper using
the notions of iconicity and indexicality in the Peircean sense and
guided by the EISV model. Several work-in-progress experiments
that illustrate how the proposed system may respond are described.

Index Terms: Human-centered computing— Visualization—Visu-
alization application domains—Information Visualization; Human-
centered computing— Visualization—Empirical studies in visualiza-
tion
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It seems typical that, within the field of visualization, visualizations
are expressed mainly within a computerized perspective. The emer-
gence of a recognized field is considered by many [8, 11,37, 40]
to have been the 1986 sponsored Panel on Graphics, Image Pro-
cessing, and Workstations [31] by the National Science Foundation
(NSF) of the United States of America. However, others [6] instead
credit Tufte’s 1983 book [48]. Yet, a broader viewpoint of con-
tributory works, expressed in [23], reaches back to Bertin’s 1967
work, to Tukey’s 1977 work, along with Tufte’s 1984 and Cleveland
and McGill’s 1988 work’s. The claim of a recognized field itself
needs closer examining. Certainly within the computerized view-
point, it holds validity. But evidence abounds of thought-provoking
visualization-related developments long preceding computerization.
Corpora of visualizations in history exist [1,2,6,17,20,32,48,50],
many of which are published in visualization field-related venues.
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Some of the visualizations appearing in corpora are discussed in
multiple sources, thereby achieving popularity at the same time, for
example, the Fever Chart of Carl August Wunderlich [1,10,52]. The
problem with corpora-based approaches is the lack of comprehensive
representation across history; a single example provides a singular
exposition but without much contextual quality. Alternatively, a com-
prehensive treatment across history, such as that about tree-based
visualizations [30], or to a somewhat lesser extent, in-depth studies
of specific visualizations such as that of Albrecht Diirer’s (1471—
1528) 1515 wood cut northern and southern celestial hemisphere
charts [14] or the discussion of the c. 10/11th century graph plot of
planetary orbits versus time [18], provides highlights of historical
context. Other historical thought-provoking visualization studies
stem from other fields, such as the ‘truth-to-nature” characterization
in [2] and the artificial boundary characterization between art and
visualization in [45]. One may reach back to prehistoric times for
additional thought-provoking studies. The sophistication of upper
Paleolithic art includes figurative and abstract symbols, abstract-
ness [46], visual devices for depth perception [9,25] amongst others,
and motion decomposition [5]. The perspective of visualization
motiving this work is that it is not only an artifact related with com-
puterization; but also, visualization is a human endeavor as natural
as human life is itself: “...visualization abounds delimited by the
space of individuality across human history.” [14].

This viewpoint has profound influence on the way visualization is
approached. It shifts the focus away from any data-centric, visualiza-
tion technique- or system-based foundations to one of human-centric
visual perception, information perception, information acquisition
and learning. Much has been said in the visualization field about
the goal of insight, indeed the quote attributed to Hamming and
used in their 1962 writing [21] “The purpose of computing is in-
sight, not numbers.”, and more particularly the quote attributed to
Card et al. [11] “The purpose of visualization is insight, not pic-
tures.” are motivational, at the least, in this regard. What makes
this shift of focus profound however is its primary engagement with
humanity. Insight is a part of humanity, but visualization centers on
humanity itself; which may also be expressed as: humanity without
visualization would not be humanity.

The Engineering Insightful Serviceable Visualization (EISV)
model [13,14] is designed with this viewpoint in mind. The model
is an expressive but neither an operational nor a process model of
visualization (e.g., it is compatible with the visualization pipeline
but does not itself express the pipeline) concentrating upon issues
of human individuality in visualization designs and engagements.
The first paper [13] described morphological example applications
of the EISV model. The second [14] informally extended the model
and guided an in-depth analysis of the specific example of Diirer’s
(1471-1528) 1515 wood cut northern and southern celestial hemi-
sphere charts. In this model, a particular visualization medium (e.g.
an image) comprises visualization components each of which of-
ten graphically represents encoded answers s € S to sought-after
questions ¢g € Q for intended answers a € A (the difference between
A and § is the former is what the human viewer wants to find out




whereas the latter is the information available from visualization
media). Visualizations components belong to type categories that
abstract the degree to which a component supports encodings of S,
for example a primary component directly represents s; € S, whereas
some other non-primary type does not. The EISV model defines
two tangible utilities of understanding and knowledge, each mea-
sured separately, in units of information chunks. The unit of chunks
follow from Miller’s 1956 exposition [33] as discussed in [12, 19]
and refers to meaningful units of information in human working
memory [12]. It follows in the EISV model, there are corresponding
measurement functions and thus understanding and knowledge gain
can be quantified although perhaps with uncertainties. The EISV
model defines learning by a positive gain with insight as such a gain
over a relatively short time, and conversely, confusion as a loss. The
EISV model has associated a number of causes for confusion and
thus, at present, its use as guidance for visualization design relies
on avoidance of these confusion causes. The model not yet incudes
causes for gains.

This highly simplified overview of the EISV model highlights
only a few of the many aspects of the model; yet, is sufficient to
convey an appreciation of the human-centeredness of the model.
Individualistic elements include: the individual interpretations of S
to A, the perception of the number and the type of visualization com-
ponents, and the utilities of understanding and knowledge. Thus, for
example, two people may engage with the same visualization media
but interpret different numbers and types of components, thereby
contributing to differing interpretations of sought-after answers A
leading to differing understanding and knowledge gains or losses.

In this paper, the notions of the Peircean triad of iconicity, in-
dexicality, and symbolicity are considered within the context of the
EISV model. Brief introductory comments about this are included
below; a comprehensive treatment is under development in [15] as
the topic is both vast and complicated and is far outside the scope of
this paper.

Charles Sanders Peirce’s (1839-1914) [36] semiotics formula-
tion describes three trichotomies, of which the triadic relationships
iconicity, indexicality, and symbolicity of signs and symbols have
been widely adopted in visualization [16, 34]. Each of these de-
scribe a relationship between the representation, an existing referent
for that representation and its meaning. Simply described, iconic-
ity refers to the identification of something by its visual likeness;
indexicality refers to inferences of causes given effects in causal re-
lationships; and symbolicity refers to negotiated meanings. Varying
degrees of all three relationships may exist for any sign or symbol,
for example a cartoon drawing of a banana may not be immediately
recognized as a banana (lower iconicity), but may yet be indicative
of something good to eat (higher indexicality). Iconicity scales have
been developed [7]. In spite of the integral nature of the triad, in this
paper, symbolicity is not dealt with.

The work described in this paper is preliminary, but already is
significantly shaped by the human-centric viewpoint. The principal
contribution is the demonstration that this alternative viewpoint of
visualization can lead to effective, if not better, visualizations, even
when dealing with constrained resource availability.

The paper is structured as follows. In the next section, the in-
tended visualization application area is described along with our
components of the proposed visualization system. The subsequent
section describes the overall visualization interests followed, in the
next section, by several work-in-progress experiments that illustrate
how the proposed system may respond. Lastly, comments about how
these experiments have been influenced by the human-centric focus
of our approach appear in the conclusion section.

2 INTENDED VISUALIZATION APPLICATION AREA AND PRO-
POSED SYSTEM

Our primary interest is in the visualization-based identification
and tracking of airborne and waterborne substances in loosely-
constrained environments. Our interest aligns with the recent re-
search and commercial interest in the identification, monitoring and
tracking of airborne (see for example [43]) and waterborne (see for
example [29,35,47]) substances such as contaminates and toxins.
We define these types of environments as having two principal prop-
erties: first, the physical environment influences the conveyance of
substances from sources to points-of-detection, but which cannot in
and of itself provide non-complex but sufficiently predictable down-
stream information; and second, sufficiently wide-open spaces such
that single points-of-detection are unlikely to provide sufficiently
useful information. Examples of these environments include air and
water flows through terrain features such as large cave structures,
canyons, and dense urban environments. Thus, computational-based
approaches may suffer site-depended complex modeling as in urban
environments [4,53], or, detection locations may lack sufficient spa-
tial resolution as in air quality monitoring which often relies upon
few, sparse and fixed locations [3,24,28,42] such as the monitoring
sensors in Korea [26,27]. Within such environments, we incorporate
feature-based use-case modeling, for example, irrigation models,
or, following the discussion in [28] near-residence spaces, traffic-
residential regions, etc. These models provide contextual features,
that is, features which can be related to and recognized from the
visualizations.

The recent proliferation of affordable aerial sensor platforms
(e.g., drone-based) coupled with low-cost sensors enables sensor
deployment for environmental monitoring [24,41,42] in difficult-to-
access terrain, for example, for forest inventory [44]. We target aerial,
low-cost sensor deployments to provide mobility within loosely
constrained environment spaces for multiple points-of-detection.

Expected benefits include better pollution monitoring for public
health, considered an under-estimated issue in [42]; and, increased
understanding of the influence that loosely-constrained environments
have on airborne and waterborne substances, for as noted in [24], re-
cent research in the general area of aerial-based applications remains
focused on deployment issues but little in the way of expanding
understanding of contributing factors.

To address the sensor-related requirements, we have developed
the aerial sensor-based testbench visualization (ASV) platform
which is composed of two almost-independent functional device
assemblies: a drone itself functions as an autonomous flight unit
providing both imaging function and aerial mobility to a sensor
assembly. Separation between the drone and sensor assembly al-
lows each to be focused upon its specific mission, and furthermore,
allows either of the device assemblies to be upgraded or replaced
independently.

The sensor assembly (which was assembled in our lab) consists
of a Raspberry Pi 4 (“Raspberry Pi is a trademark of Raspberry
Pi Ltd.” [39]) microprocessor-based board, a battery supply, and
multiple sensors currently securely placed on a 272.5mm (L) by 72
mm (W) by 88.5 mm (H) constructed frame weighing in at 443.2 g,
see Fig. 1. The frame attaches to the undercarriage of the drone via a
commercially available drone payload harness. The sensor assembly
is mainly controlled and powered by the Raspberry Pi 4, with two
micro HDMI® ports, four USB ports, wireless and Ethernet con-
nections, and thus functions as an independent computer (HDMI®
is a trademark or registered trademark of HDMI Licensing Admin-
istrator, Inc. [22]). In the base configuration, the Raspberry Pi 4
is connected to an external monitor via the HDMI port and other
peripheral devices (keyboard, mouse, etc.) connected via the USB
ports. The main power supply in this configuration comes from a
USB-C™ (“USB Type-C™ and USB-C™ are trademarks of USB
Implementers Forum” [49]) power supply. In its aerial deployment



Figure 1: Sensor assembly schematic diagram.

configuration, power is supplied via the PiJuice HAT (PiJuice is
a trademark of RAAmaudio U Ltd. [38]) connected to a 3.6 — 3.7
V, minimum 5000 mAh battery which powers the sensors through
the USB ports. The sensors include: an SF45/B LiDAR sensor by
Lightware Lidar LLC which can scan distances in the range of 0.2
m to 50 m, between 10 and 320 degrees horizontally up to 5000
observations per second; and an SDS011 PM2.5 air quality sensor
by Nova Fitness Co., Ltd. Currently, water sampling is performed
manually pending further technical assessment of the drone and
sensor assembly.

The drone and sensor assembly provides multiple data streams, in-
cluding, imagery, video, several air quality parameters, and distance
ranging. Of these, and to maintain the scope of this paper, subsequent
discussion concentrates solely upon the latter. The LiDAR stream
consists of the raw data sampling of time-stamped two-dimensional
polar coordinates of horizontal angle and distance that are then
filtered to produce various types of output. The two-dimensional
information sensing is, in part, due to resource constraints of weight,
size and memory requirements of the output data set, and, in part,
due to budgetary constraints that would be expected for low-cost
product adoption. Thus, the raw data consists of multiple sets of
distance observations per horizontal angle of the LiDAR sensor; the
LiDAR sensor sweeps horizontally left-to-right, and reverses. We
consider the rationale that the target area of observation is fixed and
unchanging, and, assuming a fixed-point drone position (say as in
hovering), the set of all distance measurements, per sensor detector
angle, pertain to two fixed points, that of the source, and that of the
target object. This is reasonably supported by believing that any
small drone positional change due to hovering operations would
have a low impact with respect to its assumed fixed point given the
operational theater distances of 10-50 m.

The raw data sampling suffers expected errors such as noise, but
we have found, also suffers extreme sensitivity at feature edges. The
former is dealt with by typical outlier detection and removal algo-
rithms. These include, in order, range checking within the sensor’s
stated specification range, a per angle binning (i.e., binning across all
horizontal scans), a two-pass z-score filter to remove individual dis-
tance observations deemed outliers, and an optional manual removal
of specific distance observations based on an manual assessment
of the data set possibly including preliminary visualizations. This
process generates a data set of one distance observation per angle,
and thereby implicitly defines a piecewise linear connectivity when
sorted by angle.

At this point, a toolkit of iconicity, indexicality and symbolicity
abstraction algorithms (IISAA), which are based on the visualization

design covered in the next section, are under development. The
inputs are sets of piecewise linear connectivity coordinate sets. The
algorithm used in this paper applies a simple one-point forward mov-
ing averaging smoothing of the piecewise linear set. The smoothing
also addresses the feature edge sensitivity. The ParaView system is
used to further manipulate and render the resulting data sets.

3 VISUALIZATION DESIGN

Our principal focus in this work is the visualization of two-fold.
First, the identification of sensor-based information along with its
contextual information. The former refers to spatial-temporal air and
water quality data along with specific substance tracking. The latter
refers to environmental features that are recognizable in having either
an influence on the data or its dispersion, or provide recognition
about the environment. Features are considered at two scales: macro
features are those recognizable within a whole scene; micro features
are those which are not and thus needs be magnified (zoomed)
or viewed in separate visualizations. Second, the exploration of
relationships between the sensor acquired data in its contextual mise
en scéne.

Generally, in this application, questions are envisioned to fall into
one of two categories: either directly about the environmental data,
for example, what are the amounts of various toxins? or, directly
about relationships between the environmental data and the features
in its physical environment, for example, how are the toxins con-
veyed to points-of-detection? With respect to the scope of this paper,
the former is of little interest here being of the quality of scientific
data and primarily matched with appropriate scientific visualization
presentations. However, the latter stimulates greater potential for
discourse due to the variances of importance human viewers may
place up the entities in the relationships, for example, referencing
the earlier question of how are toxins are conveyed, one may be
more interested in approximate or overall conveyance rather than
specific detailed analysis in a specific area such as expressing a
relationship between the feature of an irrigation channel and environ-
mental data samples taken at multiple locations along the channel.
A particular question may emphasize any aspect of this relation
to varying degrees, for example, one might be more interested in
understanding the topological layout of an irrigation channel and
less interested in the details of the environmental data distribution,
versus, another whose interest may be more exacting about whether
some environmental data is caused by the irrigation channel itself.
At the extremes, one may have complete interest in only features
or in only data. In this paper, the discourse is limited to the former
with respect to the latter, that is, the visual representation of feature
space given some relation.

Loosely constrained environment features may be represented in
various ways, for example, by images, point clouds, three dimen-
sional models, and special symbols including labels. The choice of
which depends upon two things: availability and suitability. Avail-
ability refers to whether the visualization system (alternatively, a
designer’s palette, say as used in painting, for non-computerized
applications) supports the representation; one cannot display a point
cloud if neither the data set nor system algorithms are available).
Assuming availability, then a selection needs to be made based on
suitability. Here, there is wide latitude in the visualization field about
how to do this; for example, Ware [51] advocates many heuristics to
support sound choices.

In this work, we consider the following. Sufficiently high-
resolution imagery, point clouds and three dimensional models that
are specifically focused upon features have potential to well capture
the iconicity of the features. Each, however, may do so to varying
degrees, for example, an image where the feature of interest is oc-
cluded or located at some distant point may suffer less iconicity, or,
a point cloud or three dimensional model may not exactly represent
a feature. In addition, iconicity may be decreased at lower resolu-



tions. Along with iconicity, indexicality is also associated with the
feature. In terms of feature recognition, an artifact presented in a
visualization media may be indicative of some aspect of a feature,
for example, an occluded object in an image cannot be recognized,
yet, observing its shadow may alert the viewer about that object. A
range of iconicity and indexicality values inherent in feature recog-
nition exist. Each also suffers limitations when incorporated into
visualizations, for example, images suffer two-dimensional planar
insertion in visualization often textured mapped to planes, may be
difficult to correctly orient or properly light, and may not provide
three dimensional scene viewing experiences.

High iconicity rendering of features would be primarily intended
for cases where question-based emphasis is upon the features in
interesting relations; but may be presented with lower iconicity
value were the emphasis upon the data (and in the extreme case of
a question relating only with the data, the feature may be removed
from the visualization altogether). In the visualization field, such
operations as blurring, fisheye views, etc. seek to present useful
information at varying levels of iconicity.

The research question emerges: to what iconicity and indexicality
value levels are needed for feature recognition so as to effect insight
as defined by the EISV model in the context of interesting relations
where some emphasis is placed on the features. This forms the
specific focus of the experiments described in the next section.

4 EXPERIMENT

Recall from previous discussion, a horizontal scan is obtained from
the LiIDAR sensor. When drone mounted, may have two charac-
teristics. First, the aerial platform may be stable, unmoving, and
with no tilt, thus the scan has a known height. Second, the platform
may be tilt between two successive scans, thus the height is not
known. Two experiments, each concentrating on these character-
istics, have been conducted as simulations of aerial LIDAR-based
sensing. The purpose is to explore the visual issues related with
iconicity and indexicality of feature recognition; thus follows from
the aforementioned research question.

4.1 Hallway Experiment

The sample space is a hallway with four doors, two on each side (not
symmetrically aligned), and a back wall comprising window frames
approximately half-way up at varying distances set a bit further
than the wall and a chair (placed backwards to the LiDAR sensor).
Thus, the scene consists of the macro features of doors, chair, and
wall versus window frames; and the micro feature of the varying
distances of the windowpanes. Certain distance measurements were
conducted manually to check and calibrate the sensor.

LiDAR samples were taken as follows. Multiple horizontal
sweeps at 30 sweeps per second for two minutes, extending from 45-
degree angles were conducted at each at the five predefined heights
of 90 cm, 97 cm, 106 cm, 114 cm and 120 cm such that the lowest
intersected the chair and wall and the upper two intersected only the
window frames; all intersected the doors on the side.

A top plan view of the LiDAR acquired data, with minimal filter-
ing (that is, distance averages determined for each angle for each
scan and no outlier removal) is shown in Fig. 2. This provides near-
to-original data for analysis, but due to increased numbers of points,
each point needs to be shown via small-sized glyphs accounting for
difficulty in viewing the chart. Macro features include as follows.
Features A — D represent the doors with the door width exemplified
by the outwards angled measurement (see Aa — Ab of approx. 96
cm) followed by a sharp inwards angled measurement (notated at the
feature label locations of approx. 21 cm). For comprehensiveness,
other distances are also noted on the diagram. Feature E represents
the chair. Feature F represents the wall and feature G, the window
frames (of approx. 20 cm separation). The micro features Ga, Gb,
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Figure 2: Top plan view (parallel projection) of LiDAR acquired data
after filtering.

Figure 3: Top view (parallel projection) of LiDAR acquired data after
full filtering.

and Gc represent the varying distance separations of the window
frames.

The macro features are again visible in the fully filtered image 3,
although feature D may not be well identified. So far, this discussion
has dealt with the issue of indexicality of the representation. The
image shown in 4 provides an immersive view of the filtered LIDAR
data along with an image of the far wall with windows, cropped
and scaled accordingly. The use of the image provides iconicity for
the features: it is more easily noticeable that the bulge in the center
is due to the chair, and that the wavy lines are due to the window
features.

The experiment successfully meets its objectives. First, index-
icality of macro features is usable given feature description; for
example, given the description that there are doors on each side, one
can identify those doors. Second, the incorporation of the image

Figure 4: Front view of LiDAR acquired data on an camera image of
the wall with window frames.



Figure 5: Agriculture irrigation channel, location 1

Figure 6: A LiDAR visualization of location 1

provides increased iconicity, thereby replacing feature description,
for example, there is no need to specify the description that there is
a chair. Third, there is a balance between encoding indexicality and
iconicity, for example, there is no need to provide side wall images
as the door features are identifiable. Admittedly, the macro feature
D door is problematic for indexicality only presentation, and thus
the system may introduce an image of that section of the wall to
address it.

4.2 Agriculture Experiment

The sample space are agriculture irrigation channels. Two distinct
locations were assessed, see Figs. 5 and 7. The first is a narrow
but long channel, the second, a wider but shorter channel. Cor-
responding, the LiDAR sensed images are, Figs. 6 and 8. In this
experiment, the LiIDAR height was held constant (see Fig. 7) but
each scan occurred at a different angle of tilt. It therefore is a two-
dimensional model. Currently, we are further developing the IISAA
toolkit to address issues relating with this type of data set. That
being said, in these figures, two post-processing operations have
been performed: first, transform the height of each scan line by
increments and second, perspective from the eyeball of the LiDAR.
The resulting images therefore have some perceptive correspondence
with the terrain. But this simple transformation introduces artifacts
into the visualization, the worst of which appears to be the inversion
of height perception, the channel becomes a hill. Nevertheless, it is
interesting note that, in terms of the theory presented in this paper,
the indexicality nature of the channel as a hill exists and it is easy to
see that correspondence with the actual image.

5 CONCLUSION

The viewpoint that visualization is a part of human nature means that
visualization is connected and inseparable from human experiences
and endeavors. Evidence for this abounds and it should no longer
be a matter of debate. What is up for debate is how visualizations
may be designed with this viewpoint in mind: visualizations in the
sense of computerized or non-computerized, contemporary or future
or past, scientific or information. It remains unclear what and by
how much, the exact influence of this viewpoint has on visualization
design and analysis: hence the profoundness of influence.

Figure 7: Agriculture irrigation channel, location 2
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Figure 8: A LiDAR visualization of location 2

For the most part, typical LiDAR presentations found in aca-
demics and industry rely upon large, dense, point clouds that emulate
a three-dimensional model of the scene. And there certainly is much
merit in doing so, relying on its iconicity values. However, the kinds
of visualizations considered in this paper in the experiments with
LiDAR acquired data sets presented a very different type of visual-
ization design. Beyond the obviousness of accommodating resource
constraints, the design utilized themes from humanity; namely, our
brain’s capabilities as modeled by the Engineering Insightful Service-
able Visualization model together with the Peircean-based iconicity,
indexicality and symbolicity triad as applied herein. Successful
visualizations have been demonstrated; albeit also indicative of sub-
stantive research and development to improve such to a level of
viability.

An aerial sensor-based testbench prototype system for air and
water environmental applications is also presented in this paper.
The sensor assembly, described herein, provides environmental data
along with images/video and LiDAR data sets. The testbench en-
ables the design and implementation of a visualization system based
on the human-centered viewpoint expressed in this paper.

During the work in preparing this paper, we uncovered a number
of challenges that motivate us for future work. The aerial platform
has high degree of error sampling due to its motion, and we must
contend with mission setup issues. The LiDAR sensor suffers several
technical limitations. And, not to mention, drone licensing and
operation requirements that both hinder and limit our deployments.
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