
DevOps for DataVis: A Survey and Provocation for Teaching
Deployment of Data Visualizations

Jane L. Adams

Fig. 1: Syllabi mentioning devops and tooling keywords. No DevOps keyword groups were mentioned in even close to a majority
of syllabi. Is this because they are assumed as a prerequisite? Not taught? or taught but not considered noteworthy? Regarding
tooling keywords, note the non-dominated front: no one tooling group was mentioned on much more than a third of all syllabi. Some
courses mention multiple toolings – does this improve breadth of understanding, or introduce confusion?

Abstract—We present a provocation towards teaching development operations (“DevOps") and other infrastructure concepts in the
course of collegiate data visualization instruction. We survey 65 syllabi from semester-long, college-level data visualization courses,
with an eye toward languages and platforms used, as well as mentions of deployment related terms. Results convey significant vari-
ability in language and tooling used in curricula. We identify a distinct lack of discussions around ‘DevOps for DataVis’ scaffolding
concepts such as version control, package management, server infrastructure, high-performance computing, and machine learning
data pipelines. We acknowledge the challenges of adding supplemental information to already dense curricula, and the expectation
that prior or concurrent classes should provide this computer science background. We propose a group community effort to create
one free ‘course’ or ‘wiki’ as a living reference on the ways these broader DevOps concepts relate directly to data visualization
specifically. A free copy of this paper and all supplemental materials are available at https://osf.io/bxaqz/.

Index Terms—Computing, infrastructure, deployment, software engineering, education.

1 INTRODUCTION

There exists significant heterogeneity in the content of collegiate data
visualization curricula, both with regard to content and tooling. Some
of these differences can be explained by the programs in which these
courses are housed, which may range from social science to machine
learning— the inherent symptoms of a highly interdisciplinary field
of study. Likewise, there is tremendous variability in the existing
familiarity students have with the technologies and languages used in
these data visualization courses. The result of this diversity can be
productive, as courses can theoretically cater more narrowly to the
direct needs of students in a particular program; but they can also
create problems. Students may complete a course feeling confident in
their ability to code interactive visualizations, only to face confusing

• Jane Adams is with Northeastern University. E-mail:
adams.jan@northeastern.edu

• Conflict of Interest (COI) Disclosure: Jane Adams is on the steering
committee of alt.VIS, and was an organizer in 2021 and 2022.

and complex battles in deploying these visualizations for use in a
portfolio or in the context of building a dashboard for an employer.
In these latter cases, it may have been beneficial for the student to
have encountered educational scaffolding related to deployment and
infrastructure – development operations, or "DevOps" – during their
coursework.

This is a symptom also of the ‘gap’ between academic research
and industry practice, as described by Velt et al. [19], investigated by
Parsons through interviews with practitioners [17], and discussed in
the VisGap workshops of 2021-2023 [5, 7, 11]. As the proportion of
PhD graduates heading to industry surpassed academia for the first
time in 2020, and continues to rise, educational aims necessarily should
consider the needs of industry positions [13]. Concurrently, as visu-
alization researchers increasingly encourage one another to consider
the long term reusability of research prototypes, the value of lessons in
these concepts extends beyond the classroom [11]. A search of “data
visualization" and “deployment" yields a wealth of examples where vi-
sualization has been employed to track or triage DevOps infrastructure
(“DataVis for DevOps"). However, research, and academic instruction,
are scant in describing how DevOps concepts and methods apply to the

https://orcid.org/0000-0002-7826-3500
https://osf.io/bxaqz/


structure and multi-modal dissemination of data visualizations (“De-
vOps for DataVis"). Additionally, data visualization educators may
see more complex computer science topics as outside their purview
or pedagogical responsibility. Likewise, pre- and co-requisite classes
may not consider data visualization applications of DevOps concepts
relevant enough to their students to teach in, for example, an ‘Intro to
CS’ course.

To better understand the diversity of tooling and DevOps content in
college-level data visualization courses, we conduct a convenience sam-
pled survey of recent syllabi, looking for keyword groups that would
identify specific language(s) (e.g., “Python", “R", “Web", “Tableau")
and might indicate deployment considerations (e.g., “Publishing",
“Databases", “Versioning", “Servers", and “Data Governance"). Overall,
we find that there is notable heterogeneity in tooling used across curric-
ula, with a nearly four-way tie in mentions between R, Python, Tableau,
and the web stack (HTML/CSS/JavaScript, e.g. D3.js). Additionally,
one quarter of all syllabi surveyed contain no mention of any keywords
related to DevOps. These results suggest a contributing factor to the gap
between academia and industry in visualization, and may indicate a po-
tential ‘hidden curriculum’ that is currently missing from visualization
education, à la “Missing Semester of Your CS Education" [2].

We do not presume to provoke changes to the core structure of data
visualization curricula: these courses are diverse in tooling and subject
matter by design, and fulfill different needs for students with different
expertise levels, publication needs for their visualizations, and career
objectives [3]. They may be offered at different points in students’ pro-
gram curriculum, and have varying prerequisites. Additionally, unlike
other components of a visualization curriculum (such as perception and
cognition, marks and channels, and considerations to embellishment
versus clutter), DevOps tooling changes at a rapid pace, which risks
the addition of specific tools or technology stacks quickly becoming
obsolete as lessons are recycled in subsequent years. Instead, we recom-
mend a ‘living document’, such as a wiki or open web course, to house
these dynamic learning resources, shared amongst the visualization
education community, from which educators or students might select
a subset of relevant concepts. In particular, we posit that there are
fundamentally unique concepts from DevOps that apply in unusual or
nuanced ways to Data Visualization, such that other basic computer
science scaffolding resources may be irrelevant, overly complex, or
incomplete.

2 BACKGROUND

To understand how development operations hold relevance for teaching
data visualization, we introduce some background on DevOps as a field
and its relation to data visualization; and the need for scaffolding in
computer science education broadly, along with existing models of
remedies for ‘missing’ parts of that scaffolding.

2.1 DevOps
A survey of papers about “DevOps" by Leite et al. reviews concepts
and challenges of the field [14]. They organize the field of DevOps
into Dev (development-related) and Ops (operations-related). Within
development, the engineering perspective focuses on delivery, while
the management perspective is on process. On the operations side, the
engineering focus is runtime, and the management perspective is toward
people. A summary of this conceptual framework, with key terms from
each category, is included in Table 1 [14]. Much like data visualization,
the field of DevOps is deeply collaborative and interdisciplinary as
it attempts to bridge the gap between developers and operators in the
context of production environments. We include some ideas of concepts
specific to the data visualization process in each category, and show
how across development and operations, there are different foci. The
‘Management’ title of the Process/People section of the mapping may
require a more flexible name: in the data visualization development
process, the roles of ‘manager’ and ‘engineer’ are less distinct.

There are two facets to the concern of reproducibility as it relates to
deployment in data visualization. The first is on the academic side: in
order for scientific research to be reproducible, or even usable, students
and faculty alike often require knowledge of systems such as version

Engineering Management

Development

Delivery: Complexity, automation,
architecture, versioning

DV: Interactivity, state management,
modularity / reuse, data infrastructure

Process: Product cycles,
compliance, measurement

DV: Task analysis, user studies,
personas

Operations

Runtime: Security, stability, A/B
testing, scalability

DV: Data privacy, load-on-filter, map
tilings, labeling, JIT visualizations,
caching views

People: Collaboration, teams,
knowledge, autonomy

DV: Adoption, extension, graphical
communication, visual hypothesis
generation; dashboard-as-a-service

Table 1: A table summarizing the conceptual map described by Leite et
al. in their survey of DevOps concepts and challenges [14], along with
suggestions we have made for how these conceptual areas might map
to data visualization (“DV") development ideas.

control and package management, to ensure that code compiles consis-
tently over time and environments [6, 11]. Second, when academics
collaborate with industry, there is a concern about “matters of care", as
elucidated by Akbaba et al. [1]. For example, they identify maintenance
as one critical area of neglect when visualization academics work with
industry collaborators on a tool. Similarly, Walny et al. in their review
of several large data visualization projects identify specific gaps in the
data visualization design ‘handoff’ to collaborators: Adapting to data
changes, anticipating edge cases, understanding technical challenges,
articulating data-dependent interactions, communicating data mappings,
and preserving data mapping integrity across integrations [20]. All of
these steps happen between project conceptualization and deployment
and use, and are iterative steps of the visualization design process it-
self. In their 2020 meta-analysis, Battle and Scheidegger highlight the
need for collaboration between the visualization and data management
communities to address the conflict between computational constraints
and user-centric design concerns, proposing optimization standards,
redefining visualization contributions, and fostering interdisciplinary
collaborations as potential solutions [4]. All of these considerations
overlap with the field of DevOps in some way, and we expect that
implementing these recommendations will necessitate discussions of
development operations within visualization education.

2.2 Education

It has been well-documented that “scaffolding" can improve learning
outcomes for students. One meta-analysis, specifically of computer-
based scaffolding studies in STEM education, found that scaffolding
had a significant effect on the cognitive outcomes of problem-based
learning (“PBL") [12]. Scaffolding can be divided into two types:
“conceptual scaffolding" helps students connect pieces of evidence
into a cohesive mental model, understanding interactions between
elements; “strategic scaffolding" helps students navigate a problem
space with a targeted approach to interacting with evidence. In the
context of deployment considerations for data visualization, conceptual
scaffolding might involve teaching students a mental model of the
relationships between e.g., data sets, automated analysis pipelines,
APIs, caching, modules, packages, compilation, repository, server, and
client. A strategic scaffolding approach might focus directly on a
targeted deployment stack: e.g., how to get data from a public health
resource into an interactive visualization embedded in a blog post
about epidemiology, using Excel, DataWrapper, and Substack. The
“Zone of Proximal Development" (ZPD) exists between what a student
can accomplish independently, and what a student is unable to do. It
consists of tasks that a student can accomplish with help. The purpose
of scaffolding is to enable students to move into this learning zone,
such that scaffolding can be removed (“fading") as mental models form
and students are more able to solve problems independently [15,21]. In
the context of data visualization education, this might consist of early
assignments being presented with a schematic of the mental model for
where data lives, how it flows, and what components are implicated
(server, client, memory, database, etc.), while later assignments might
leave the drawing of these schematics to the student.



Especially in rapidly changing fields like computer science, the chal-
lenges of percolating down new information to curricula is significant.
Data engineering—a distinct task from the upstream of modeling and
analysis of data science—continues to be a source of frustration and
significant time expenditure for practitioners, yet under-represented
in educational material [10]. For non-majors taking introductory CS
courses, fears can range from perceptions of STEM as difficult, to more
concrete challenges like coding and preparation [9]. Data visualiza-
tion is a notably interdisciplinary field, with many newcomers from
non-CS backgrounds, so it is not surprising that questions about how to
teach development in data visualization education are growing areas of
consideration [3]. Courses such as MIT’s “The Missing Semester of
Your CS Education" [2] and a similar course developed at UC Davis [8]
show promise as examples of supplemental online course materials to
onboard students to more mundane or ‘meta’ CS concepts.

Happily, we do see some great examples of scaffolding efforts in
some data visualization curricula. Two courses that we identified as
particularly effectual at covering a wide variety of concepts included
Columbia University’s 2016 ‘Metrics + Data Visualization I’ course,
taught by Aurelia Moser [16]; and its 2017 course ‘Data Visualization
for Architecture, Urbanism and the Humanities", taught by Juan Fran-
cisco Saldarriaga [18], which cover concepts such as version control,
scraping, and APIs.

3 METHODS

To conduct our study on the integration of DevOps concepts in colle-
giate data visualization instruction, we employed the following meth-
ods:

3.1 Collection

We included syllabi from college-level data visualization courses using
a convenience sampling approach. We conducted Google searches
using the keywords "data visualization syllabus", "data visualiza-
tion course", "data visualization filetype:pdf", and "data visualization
site:github.com". We also reached out on vis.social, a federated so-
cial media server which caters toward visualization academics and
practitioners, using the #DataVisualization, #HCI, and related hash-
tags, asking for links to syllabi that met our criteria. We excluded
non-English syllabi, workshops, short courses, and non-college sources.
We did not discriminate between computer science and non-computer
science courses, or between graduate and non-graduate courses, be-
cause many courses appeared to be offered to both undergraduates
and graduates, or simultaneously across multiple academic programs,
and at minimum, introduction to these mental models are useful for
students at all levels. Additionally, our intention was to source a wide
sample, so as to highlight the variability in curricula. We do not break
out our analyses by these sub-groupings, but future analysis might find
distinctions in material between course levels or parent disciplines.

3.2 Coding

We used a keyword-driven, thematic open coding approach [22] to
analyze the syllabi obtained from various data visualization courses.
Each syllabus was carefully reviewed via close reading in order to tag
these categories, which were initially formulated following literature
review of DevOps considerations, but added to, adapted, merged, or
divided during the open coding process. We chose a manual coding
approach over Natural Language Processing (“NLP"), because of con-
cerns related to lemmatization, namespace collisions, or overlapping
usage. We did not code requirements for completing coursework (e.g.
LaTeX for write-ups; hardware system requirements), privacy policies,
software subscription costs, or other themes and topics that were not
directly related to DevOps concepts. We left out Geospatial terms (such
as ArcGIS, MapBox, Leaflet), as it was often difficult to ascertain the
extent to which these were used as tooling, data sources, packages
within other tools, or for deployment. ‘Web’ appears twice because as
a tooling keyword group, this encapsulates terms such as HTML, CSS,
and Javascript, whereas in the DevOps keyword group, ‘web’ refers to
web terms, such as “web-based", “web apps", internet, and browser.

Table 3: A table of tooling keyword groups and associated syllabi
counts.

Tooling Keywords Syllabi
R R, ggplot, Plotly R, Shiny, dplyr, tidyverse 23

Python Python, Plotly Python, Bokeh, Vega-Altair,
SciPy, Jupyter notebooks, Google Colab, Flask,
Streamlit, bqplot

23

Web JavaScript, D3.js, Vega-lite, SVG, HTML,
CSS, React, Node, JS

20

Tableau Tableau Public, Tableau Desktop 22
Sheets Excel, Google Sheets, spreadsheets 13

BI PowerBI, Qlikview, Qlik, Business Intelligence 0
Other DataWrapper, MATLAB, Processing, Adobe

Illustrator, Google Charts
15

Table 4: A table of DevOps keyword groups and associated data visual-
ization syllabi counts.

DevOps
Server Server, host(ed/ing), cloud, deploy(ment, ing,

ed), Node, Heroku, Vercel, AWS, GCP, Netlify,
Github Pages, nginx, WSGI, Flask

10

Publishing Publish(ed/ing), embed(ded), posting (exclud-
ing to LMS)

10

Dashboards Dashboard(s/ing), Streamlit, Shiny, Dash 17
Versioning Git, GitHub, GitLab, BitBucket, version con-

trol, versioning
15

Dependencies Dependencies, package management, Ana-
conda, Conda, Pip, PyPI, CRAN, npm, virtual
environment, libraries

10

Database database, API, (R)DBMS, (No/My)SQL, Mon-
goDB, ‘big data’, data management

16

Web web (-page, -based, application, apps), internet,
browser, developer, client-side

23

Pipeline Pipeline(s), data flows, ETL, automat (-ion,
-ed) (excludes data cleaning unless automated)

9

Scale scal(e/ing), latency, speed, load balancing,
HPC

7

Community Stack Overflow, Reddit, Discord, Slack (public,
excluding course chat)

3

Governance data governance, access, passwords, PII,
OAuth, security, credentials, .env, authenti-
cation, SSO

1

Notebooks Notebooks, Observable, Jupyter Notebooks,
R Markdown, .ipynb, .Rmd, Google Colab,
JupyterHub, IPython, Iodide

13

Coding IDEs, VSCode, IntelliJ, PyCharm, Processing,
Terminal, Vim, Vi, Emacs, bash, console

7

Testing Unit tests, QA testing, quality assurance, bug
fixes, red teaming

5

MVC MVC, Django, Ruby on Rails, AngularJS 0

https://missing.csail.mit.edu/
https://missing.csail.mit.edu/
https://web.archive.org/web/20230129094736/https://github.com/auremoser/web-coding/blob/master/syllabus.md
https://github.com/juanfrans-courses/dataViz_arch_hum/blob/master/Spring_2017/Syllabus.md
https://github.com/juanfrans-courses/dataViz_arch_hum/blob/master/Spring_2017/Syllabus.md


4 RESULTS

The most significant finding of this analysis is 1) the heterogeneity of
tooling across curricula, and 2) the lack of DevOps terms mentioned on
syllabi, which may serve as a proxy for classroom time expended teach-
ing these concepts related to deployment. Features of each technology
are present in the co-occurrence: for example, Python keywords may
co-occur with Notebooks keywords, likely because syllabi that mention
Python might also mention Jupyter Notebooks or Google Colab. Like-
wise, syllabi that mention Tableau might also mention the deployment
of dashboards.

4.1 Tooling
There was significant heterogeneity in the tooling keyword groups
mentioned across the syllabi surveyed, as shown in Fig. ??. We found
“R", “Python", “Tableau", and “Web" to each be found in about one
third of syllabi. “Other" and “Sheets" were found in about a quarter of
all syllabi, and there were no mentions of the “BI" category. Note that
the proportions do not add up to 100% because many syllabi mentioned
multiple tool sets. Interestingly, several syllabi mentioned both R-
and Python-related keywords. Syllabi with mentions of sheets-related
terms, such as Excel or Google sheets, co-occurred most often with
the Tableau keyword group. These co-occurrences are shown in Fig. 2.
Using these co-occurrence summaries, we can see where certain tools
might complement one another, or be offered as a choice to students.
In the case of JavaScript and Python co-occurring, for example, we saw
the languages being offered as a binary choice, depending on students’
prior familiarity with each. Conversely, in the case of Tableau and
sheets tools like Excel, these tools were taught in conjunction with one
another as discrete steps of a data visualization design workflow.

Fig. 2: Co-occurrence of tooling keywords. Of the one third of the total
syllabi that mentioned Python keywords, half also mentioned web tool
keywords (e.g. HTML, CSS, Javascript).

4.2 DevOps
Overall, we found that three quarters of syllabi surveyed contained
mention of at least one of our DevOps keywords, and one quarter did
not make any mention of DevOps keywords. The most common key-
word groups included the ‘Web’ category, followed by ‘Dashboards’,
‘Database’, and ‘Versioning’, as shown in Fig. ??. Rarely mentioned
keyword groups included concepts such as ‘Model-View-Controller’

(MVC), e.g. Ruby on Rails and Django (never mentioned); ‘Gover-
nance’, which included security and privacy considerations; ‘Commu-
nity’, in reference to resources for connecting with other coders, such
as Stack Overflow; ‘Testing’, encapsulating unit tests, QA testing, and
debugging; and ‘Coding’, with concepts such as IDEs and terminal
commands.

Fig. 3: Co-occurrence of DevOps keywords. Of the one third of all syl-
labi that mentioned notebook-related terms (e.g. Jupyter Notebooks,
Google Colab, Observable), nearly half also mentioned web terms.
Notebooks and dependency considerations (e.g. package manage-
ment) are often mentioned together, perhaps because notebooks can
provide a means of more easily syncing environments for different
users.

5 DISCUSSION

We found significant variations in tooling from course to course, which
may not necessarily inhibit learning, but can make for a rather complex
landscape of platforms, languages, and acronyms for newcomers to
navigate. For courses that allow students to create visualizations in
one choice language of many, it is not clear whether the curriculum
includes a discussion about the affordances of each, such as: compute
time, syntax, data structures, readability, financial cost, or real-world
adoption. We posit that in some cases, within-course heterogeneity
of toolings may be useful for providing varied exposure to visualiza-
tion methods, or could prove overwhelming or irrelevant. Likewise,
between-course heterogeneity may indicate frameworks that are catered
toward the disciplines in which the courses are housed; or, could hint at
indecisiveness or confusion in choosing optimal toolings when devel-
oping curricula. A more comprehensive survey might break out these
courses by audience to identify which toolings are most popular in each
discipline.

Overall, we find a dearth of information for students in visualization
courses related to DevOps. In some cases, the absence of this con-
tent may be due to instructors seeing many of these concepts as ‘table
stakes’: an assumed baseline for entry to begin a course. Indeed, some
syllabi explicitly outlined prerequisite coursework or requirements for
existing familiarity with concepts like git, or programming in general.
However, the technologies and mental models associated with specifi-
cally the deployment of data visualizations may be more nuanced or
complex than students’ baseline familiarity with, e.g., building a shop-
ping cart app, participating in a hackathon, or contributing to an open



source project, and these assumptions about students’ familiarity could
often be off-base. Additionally, the greater the number of prerequisites
for a data visualization course, the greater the barrier to entry is for
students from non-CS backgrounds, whether newly entering computer
science or looking to enhance a non-CS course load with visualization
experience. Finally, we notice particular lack of education around De-
vOps considerations which may have been a non-issue just five years
ago, but are of increasing importance in real-world visualization ap-
plications, such as: Scaling, including High-Performance Computing
(HPC), latency considerations, and load balancing; Databases; and
automated pipelines, e.g. machine learning workflows. These topics
have grown in relevance recently due to advances in compute power,
data collection efforts, and artificial intelligence developments. Of
course, these topics have their own courses and entire programs, but we
saw a number of syllabi that mentioned concepts from these domains,
such as dimensionality reduction and modeling. However, while the
methods were alluded to, there remains a notable lack of discussion
around the DevOps that these methods impel. We also expected to
find that there might be a clear difference or grouping of ‘CS’ versus
‘Non-CS’ courses in terms of prerequisites, DevOps keywords, or even
course titles, but we did not see a clearly identifiable pattern. It seems
that non-CS courses varied in devoting more or less syllabus space
to DevOps concepts due to their unfamilarity for students; likewise,
some CS courses may have devoted more or less time based on the
assumption that students were already familiar with the concepts.

5.1 Note on Motivation
We would be remiss if not also acknowledging personal exasperation
with and desire for better preparatory coursework in the realm of De-
vOps for data visualization. Direct experience with these frustrations
by the author of this paper in part motivated the data collection effort
and recommendations made. Outside of the careful coding process
described here, this topic was motivated also by spontaneous conversa-
tions among fellow PhD students surrounding confusion and feelings
of being ‘lost’ in a sea of new web technologies and complex data
management structures. While these sentiments have not been fully
quantified as yet, the visualization research community may find that in
developing these resources, thereby acknowledging this knowledge gap,
more students feel comfortable admitting their sense of aimlessness or
overwhelm on these facets of data visualization creation.

Many data visualization courses in Python implicitly, but not ex-
plicitly, teach a simple model of data and interaction, such as a locally
hosted data file being parsed in a Jupyter notebook. However, in a
‘real world’ scenario, the considerations that must be made to existing
institutional infrastructure and various stakeholders exceeds simply
performing task analysis or interviews, and necessitates a fundamental
technical understanding of the components at play in the deployment
of the final visualization. This additional knowledge could include con-
cepts such as CI/CD, virtualization and containerization, authentication,
and other such DevOps terms as outlined in Table 1.

5.2 Recommendations
We propose that the community set to task developing a living docu-
ment that can serve as a resource to unite these disparate curricula, and
offer students a more complete picture of 1) the tooling options within
visualization design, and 2) mental models associated with DevOps,
which include considerations for deployment, testing, collaboration,
and maintenance. We suggest MIT’s “The Missing Semester of Your
CS Education" as an example of a simple online course that can provide
quick navigation to basic concepts that scaffold a visualization educa-
tion. In Table 2.1, we sketch out the beginnings of a Venn diagram
showing some overlapping concepts between the MIT course and our
open-coded DevOps keyword categories. This overlap demonstrates
how, in some areas, efforts may not need to be reduplicated, and ref-
erences to existing resources can be easily linked. However, in other
areas, such as publishing dashboards, or the specifics of how note-
books render visualizations, we suspect that more careful and nuanced
input from the visualization community (both in academia and indus-
try) may be necessary to sufficiently onboard or supplement students’

understanding.

5.3 Limitations & Future Work

It is important to note that our study had limitations, such as potential
biases in the selection of syllabi due to convenience sampling and the
exclusion of non-English sources. The syllabi sampled over-represents
the United States and Europe. We observed a higher ratio of code-
based technologies (e.g. Python, R, Javascript) as compared to low-
or no-code technologies (e.g. Tableau, BI, spreadsheets) in syllabi
from Github as compared to syllabi found via Google Search: prior
to searching GitHub, the majority of syllabi did not contain DevOps
keywords. Additionally, syllabi do not contain the entirety of course
material. It is possible, and even likely, that mention was made of these
keyword groups in individual lesson plans, or on additional resource
links. We do not presume that syllabi are full representative account-
ings of classroom material. A more robust collection effort might have
‘bombed’ all links on a course website, or performed Open Character
Recognition (OCR) on class slides or lecture recordings to pull addi-
tional text. Professors may devote significant time in-class to teaching
these tools, but not see value or significance in documenting them on
the syllabus due to their auxiliary (albeit essential) nature. Despite
these shortcomings, these results reflect our findings in reading these
syllabi: that conversations about deployment and infrastructure rarely
factor significantly or comprehensively into data visualization course
material as it is shared in the semester lesson plan. Further surveys
should be conducted which more completely sample the visualization
higher education space, and to quantitatively compare the abundance
of these terms in curricula with job descriptions and documentation of
practice in industry. Nonetheless, we believe that our findings provide
valuable insights into the current state of data visualization education
and the need to supplement curricula with a dynamic compendium of
DevOps learning resources.

6 CONCLUSION

In conclusion, we put forth a provocation towards developing new
community resources to teach students about DevOps for DataVis, and
support this provocation with coded readings of syllabi from college
courses in data visualization. We identify and discuss the reasons for,
and challenges of, the wide variety of toolings employed by different
courses. In searching specifically for DevOps related terminology, we
identify conceptual areas and concrete applications that may be omitted
from existing courses, which may be necessary teachings for students
preparing for careers in industry. We make a recommendation for a low-
stakes, dynamic resource that can be shared amongst the community
to aid in scaffolding a more complete education in data visualization.
Such a resource should be easily editable and discussed, and rely on
outside resources to stay current, such as by interfacing with existing
documentation for various toolings. Other content, such as conceptual
models (thinking beyond the internet as ‘a series of tubes’, for example)
may remain current for longer due to their tooling-agnostic focus.

ACKNOWLEDGMENTS

Thanks to Andrew McNutt for the term ‘table stakes’, links to some
syllabi, early discussion of some of these ideas, and editing and feed-
back. Thanks also to Andrew Heiss, Eduardo Graells-Garrido, Jack
Dougherty, Tamara Munzner, Marian Dörk, Alexander Lex, and T. from
Data Rocks for sharing syllabi and other resources. Thanks to Michael
Davinroy also for editing help.

REFERENCES

[1] D. Akbaba, D. Lange, M. Correll, A. Lex, and M. Meyer. Troubling col-
laboration: Matters of care for visualization design study. In Proceedings
of the 2023 CHI Conference on Human Factors in Computing Systems, pp.
1–15, 2023. 2

[2] A. Athalye, J. Gjengset, and J. J. Gonzalez. The missing semester of your
cs education, January 2020. 2, 3

[3] B. Bach, S. Carpendale, U. Hinrichs, and S. Huron. Visualization em-
powerment: How to teach and learn data visualization (dagstuhl seminar



22261). In Dagstuhl Reports, vol. 12. Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, 2023. 2, 3

[4] L. Battle and C. Scheidegger. A structured review of data management
technology for interactive visualization and analysis. IEEE transactions
on visualization and computer graphics, 27(2):1128–1138, 2020. 2

[5] T. Dang, N. Nguyen, J. Hass, J. Li, Y. Chen, and A. Sill. The gap between
visualization research and visualization software in high-performance
computing center. VisGap2021-The Gap between Visualization Research
and Visualization Software, 2021. 1

[6] J.-D. Fekete and J. Freire. Exploring reproducibility in visualization.
IEEE Computer Graphics and Applications, 40(5):108–119, 2020. doi: 10
.1109/MCG.2020.3006412 2

[7] C. Gillmann, M. Krone, G. Reina, and T. Wischgoll. VisGap 2022: Front-
matter. In C. Gillmann, M. Krone, G. Reina, and T. Wischgoll, eds.,
VisGap - The Gap between Visualization Research and Visualization Soft-
ware. The Eurographics Association, 2022. doi: 10.2312/visgap.20222006
1

[8] G. Gilson, S. Ott, N. Rose Ledesma, A. Prabhu, and J. Porquet-Lupine.
Design and evaluation of "the missing cs class," a student-led undergradu-
ate course to reduce the academia-industry gap. In Proceedings of the 53rd
ACM Technical Symposium on Computer Science Education - Volume 1,
SIGCSE 2022, p. 467–473. Association for Computing Machinery, New
York, NY, USA, 2022. doi: 10.1145/3478431.3499422 3

[9] E. Hogan, R. Li, and A. G. Soosai Raj. Cs0 vs. cs1: Understanding
fears and confidence amongst non-majors in introductory cs courses. In
Proceedings of the 54th ACM Technical Symposium on Computer Science
Education V. 1, pp. 25–31, 2023. 3

[10] B. Howe, M. Franklin, L. Haas, T. Kraska, and J. Ullman. Data science
education: We’re missing the boat, again. In 2017 IEEE 33rd international
conference on data engineering (ICDE), pp. 1473–1474. IEEE, 2017. 3

[11] T. Isenberg. Personal experiences of providing and using research pro-
totypes. In Proceedings of VisGap – The Gap between Visualization
Research and Visualization Software (Workshop at EuroVis), pp. 17–22.
Eurographics Association, Goslar, Germany, 2022. doi: 10.2312/visgap.
20221059 1, 2

[12] N. J. Kim, B. R. Belland, and A. E. Walker. Effectiveness of computer-
based scaffolding in the context of problem-based learning for stem edu-
cation: Bayesian meta-analysis. Educational Psychology Review, 30:397–
429, 2018. 2

[13] F. Kreier. How mixing academia and industry opens doors in graduate
school and beyond. Nature News, May 2023. 1

[14] L. Leite, C. Rocha, F. Kon, D. Milojicic, and P. Meirelles. A survey of
devops concepts and challenges. ACM Comput. Surv., 52(6), nov 2019.
doi: 10.1145/3359981 2

[15] N. D. Martin, C. Dornfeld Tissenbaum, D. Gnesdilow, and S. Puntambekar.
Fading distributed scaffolds: The importance of complementarity between
teacher and material scaffolds. Instructional Science, 47:69–98, 2019. 2

[16] A. Moser. Metrics + data visualization i - sva-dsi syllabus. https:
//mzl.la/sva-vis-1, Sept. 2016. Accessed: 2023-07-07. 3

[17] P. Parsons. Understanding data visualization design practice. IEEE Trans-
actions on Visualization and Computer Graphics, 28(1):665–675, 2021.
1

[18] J. F. Saldarriaga, B. Wanner, and M. Madera. Data vi-
sualization for architecture, urbanism and the humanities syl-
labus. https://github.com/juanfrans-courses/dataViz_arch_
hum/blob/master/Spring_2017/Syllabus.md, Spring 2017. Ac-
cessed: 2023-07-07. 3

[19] R. Velt, S. Benford, and S. Reeves. Translations and boundaries in the gap
between hci theory and design practice. ACM Transactions on Computer-
Human Interaction (TOCHI), 27(4):1–28, 2020. 1

[20] J. Walny, C. Frisson, M. West, D. Kosminsky, S. Knudsen, S. Carpendale,
and W. Willett. Data changes everything: Challenges and opportunities
in data visualization design handoff. IEEE Transactions on Visualization
and Computer Graphics, 26(1):12–22, 2020. doi: 10.1109/TVCG.2019.
2934538 2

[21] A. West, J. Swanson, and L. Lipscomb. Ch. 11 scaffolding. Instructional
methods, strategies and technologies to meet the needs of all learners,
2019. 2

[22] M. Williams and T. Moser. The art of coding and thematic exploration
in qualitative research. International Management Review, 15(1):45–55,
2019. 3

https://doi.org/10.1109/MCG.2020.3006412
https://doi.org/10.1109/MCG.2020.3006412
https://doi.org/10.2312/visgap.20222006
https://doi.org/10.1145/3478431.3499422
https://doi.org/10.2312/visgap.20221059
https://doi.org/10.2312/visgap.20221059
https://doi.org/10.1145/3359981
https://mzl.la/sva-vis-1
https://mzl.la/sva-vis-1
https://github.com/juanfrans-courses/dataViz_arch_hum/blob/master/Spring_2017/Syllabus.md
https://github.com/juanfrans-courses/dataViz_arch_hum/blob/master/Spring_2017/Syllabus.md
https://doi.org/10.1109/TVCG.2019.2934538
https://doi.org/10.1109/TVCG.2019.2934538

	Introduction
	Background
	DevOps
	Education

	Methods
	Collection
	Coding

	Results
	Tooling
	DevOps

	Discussion
	Note on Motivation
	Recommendations
	Limitations & Future Work

	Conclusion

