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Abstract. We discuss the nonstandard (non-Euclidean, four-dimensional, of variable dimension, and
with two-edged space placement) visualizations, their neurophysiological and philosophical possibilities,
and ways to realize them.

From about fifteen years the second author is involved into graph theory, mainly, into visual graph

representation. It has a limited number of methods and his experience shows that it is often hard to

obtain a good visual representation of given graphs, especially of complicated graphs coming from real

life. This suggested him to consider nonstandard visualization, which, on the other hand, should be one

of branches of his project of the investigation of the mind space. The main purpose of this paper is to

push interest to nonstandard visualisation, to motivate people to deal with it, to advance it.

Related work. Nonstandard visualization is already used in art (see, for instance, [31]) and its

possibilities can be illustrated by drawings by the well-known Dutch artist Maurits Cornelis Escher (1898–

1971).1 Namely, there are drawings of objects which are non-Euclidean (see “Ascending and descending”,

“Balcony” (Fig. 1), “Belvedere”, “Print Gallery”, and “Waterfall” (Fig. 2)), (see also “Butterflies”,

“Circle Fish”, “Circle limit II”, “Circle limit III” (Fig. 3), “Lizards”, “Smaller and smaller”, “Path

of life II”, “Snakes”, and “Whirlpools”, see also [14]); have two-edged space placement (see “Another

World 2”, “Convex and concave” (Fig. 4), “Cube with magic ribbon”, and “Relativity” (Fig. 5)), and

even have variable dimension (see “Cycle”, “Day and night”, “Doric”, “Drawing hands”, “Encounter”,

“Metamorphosis III” (Fig. 6), “Mirror”, “Predestination”, and “Reptiles” (Fig. 7)).

Key words and phrases. nonstandard visualization, 4D, virtual reality, Thurston’s geometrization conjecture, hyperbolic
space, Maurits Cornelis Escher, Charles Howard Hinton, Piotr Uspenskiy, the Tibetan Book of the Dead, Dharmakaya,
bardo of dharmata.

1The referenced drawings are shown at the next pages. The remained listed drawings can be downloaded from mega.nz/

file/N8B3ET5C#jRqkjW-_2lBHL3AG8SDAlHYmk0P46AQ7l3ldO-Xfodk.

1

mega.nz/file/N8B3ET5C#jRqkjW-_2lBHL3AG8SDAlHYmk0P46AQ7l3ldO-Xfodk
mega.nz/file/N8B3ET5C#jRqkjW-_2lBHL3AG8SDAlHYmk0P46AQ7l3ldO-Xfodk
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Figure 1. The non-Euclidean visualisation in “Balcony” by M.C. Escher.
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Figure 2. The non-Euclidean visualisation in “Waterfall” by M.C. Escher.
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Figure 3. The non-Euclidean visualisation in “Circle limit III” by M.C. Escher.
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Figure 4. The two-edged visualisation in “Convex and concave” by M.C. Escher.
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Figure 5. The two-edged visualisation in “Relativity” by M.C. Escher.
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Figure 7. The variable dimension visualisation in “Reptiles” by M.C. Escher.
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The next step was done by Douglas Dunham in the paper [14], according to which “M.C. Escher was

the first person to do so [art in the hyperbolic plane], doing all the needed constructions laboriously

by hand. To exhibit the true hyperbolic nature of such art, the pattern must exhibit symmetry and

repetition. Thus, it is natural to use a computer to avoid the tedious hand constructions performed

by Escher. We show a number of hyperbolic patterns, which are created by combining mathematics,

artistic considerations, and computer technology”. Saul Schleimer and Henry Segerman constructed a

number of sculptures, each based on a geometric design native to the three-dimensional sphere [51].

Using stereographic projection they transferred the design from the three-sphere to ordinary Euclidean

space. All of the sculptures were then fabricated by the 3D printing service Shapeways. The authors

considered their sculptures as tangible representives of topological and geometric abstractions. Roice

Nelson and Henry Segerman in [44] described ways to visualize three-dimensional generalized regular

tilings in spherical, Euclidean or hyperbolic spaces.

Jeff Weeks in [59] argues about these spaces as follows.

“Curly leaf lettuce makes an excellent model of the hyperbolic plane. You can make yourself a paper

model of the hyperbolic plane by cutting a large number of equilateral triangles from a few sheets of

paper and taping the triangles together so that exactly seven triangles (not six) meet at each vertex in

the resulting surface. Either way, with lettuce or a paper surface, the hyperbolic plane is roomy in the

sense that the area A enclosed by a circle of radius r grows much faster than the expected A = πr2.

In fact, it quickly approaches an exponential growth rate.... Beyond its many applications in math and

physics, hyperbolic space has recently found a new application in data visualization [43]. Its rapidly

growing volume provides an excellent environment for displaying large data sets. For example, a large

binary tree can’t be embedded in flat space without extreme crowding because the number of nodes

grows exponentially as a function of the depth, but the tree fits comfortably in hyperbolic space with

no crowding at all because the volume of hyperbolic space also grows exponentially as a function of the

radius”.

“Astrophysicists already use curved-space graphics as part of their research to determine the shape of

the real universe, which is still unknown. In particular, curved space visualizations have provided new

insights into the possible topologies for a spherical universe.

I hope that in the future these tools will find additional application in computer graphics and games.

The hypersphere offers gamers the novelty of curved space along with the convenience of a finite yet

boundaryless space, while hyperbolic space provides the roominess for working with exponentially com-

plicated data sets”.

Indeed, John Lamping, Ramana Rao, and Peter Pirolli in papers [35] and [36] described a convenient

focus + context browser for visualizing and manipulating large hierarchies, placed in the hyperbolic plane.

A similar tool to interactively visualize large directed graphs in three-dimensional space was Walrus [56],

which used 3D hyperbolic geometry to a display that simultaneously showed local detail and the global

context.

On the other hand, according to [47], “The main effort for mathematics visualization, particularly of

Non-Euclidean spaces, took place at the Geometry Center2 from 1994 to 1998. This initiative, under

the leadership of William Thurston, resulted in a scientific program to study and disseminate modern

geometry using interactive visualization. ... For this purpose, a platform called Geomview [1] was

developed. The software was based on OpenGL and supported interactive viewing in Euclidean, spherical,

and hyperbolic spaces”. Geomview featured a plugin architecture that made possible, among other things,

the development of a module for the visualization of manifolds [22].

2The National Science and Technology Research Center for Computation and Visualization of Geometric Structures
(USA).
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Another step are dynamic visualisations. In [23] (see also [20]) are mentioned different projects at the

Geometry Center. “One is the video Not Knot [21]. This video, whose purpose is to illustrate some of the

basic concepts of knot theory and the theory of 3-manifolds, includes a fly-through scene of hyperbolic 3-

space ... During this fly-through one easily notices that apparent size changes more rapidly in hyperbolic

space than in Euclidean space. Angles appear to change a we move closer to them. In fact, however,

they are no changing – what changes is our perception of them.

Another project ... is a flight simulator for hyperbolic space written by Linus Upson, a Princeton

University undergraduate working as a research assistant during the summer of 1991. Patterned after

the popular SGI flight simulator, Upson’s program allows one to navigate through a scene in hyperbolic

space ... The program is excellent for conveying a sense of how angles and distances seem to change with

motion. The intuition which one gains from this experience is hard to pinpoint but extremely valuable

in understanding hyperbolic geometry”. Jeff Weeks’ software Curved Spaces [57] is a “flight simulator

for multiconnected universes”. It simulates movement within a selection of closed three-dimensional

manifolds, with S3, E3 and H3 geometries [that is homogeneous and isotropic: spherical, three-dimensional

euclidean and hyperbolic geometries]. Each of these is viewed as if we are living inside the space and

seeing objects in the space via rays of light that travel long geodesics in the space. That is, light travels

along paths of shortest distance” [25].

The character of the computer game HyperRogue [66],[6] by Zeno Rogue wanders about the hyperbolic

plane. The vast game space provides a lot of adventures, see [67] and [68] for nice illustrations based, as

we understood, on different models of the hyperbolic geometry.

Moreover, even more exotic geometries are implemented in the game, see [67]. The deep mathemat-

ical motivation for this is explained in [7]: “Non-isotropic geometries do not behave the same in all

directions. Although, they are less famous than the isotropic geometries, they arise in Thurston’s fa-

mous geometrization conjecture [54]. This conjecture generalizes the Poincaré conjecture, one of the

most important conjectures in mathematics, proven by Perelman [49]. Every two-dimensional compact

manifold can be given a spherical S2, Euclidean, or hyperbolic geometry H2; the Thurston conjecture

states that every three-dimensional compact manifold can be similarly decomposed into subsets, each of

which admitting one of eight geometries, called the Thurston geometries. The eight geometries include

the three isotropic geometries mentioned, two product geometries (S2 × R, H2 × R, also called S2 × E
and H2 × E), and three other geometries: Solv, Nil (twisted E2 × R), and twisted H2 × R (also called

the universal cover of SL(2,R)). The interest in Solv and Nil ranges from low-dimensional topologists,

geometric group theorists, as those geometries exhibit growth patterns typical to solvable and nilpotent

groups [38], to physicists [18], and cosmologists, as possible geometries of our Universe [58]3. Note that

not all three-dimensional geometries are Thurston geometries. There are also non-isotropic geometries

for which there are no compact manifolds which admit these geometries....

Other than the scientific purposes, the visualization of non-isotropic geometries has potential applica-

tions in video games or art. Many popular (mostly independent) video games experiment with spaces

that work differently from our Euclidean world. This includes spaces with weird topology (Portal, An-

tichamber, Manifold Garden), interactions between 2D and 3D (Perspective, Fez, Monument Valley),

non-Euclidean geometry (HyperRogue), extra dimensions (Miegakure). Similar experimentation also

happens in art. Such games and art are interesting not only for mathematicians and physicists wanting

to understand these spaces intuitively, but also for casual players curious to challenge their perception

of the world. Non-isotropic geometries are especially relevant here because of their easily observable

weirdness. Nil, a reminiscent of Penrose’s staircases and M.C. Escher’s artworks, should be promising

for game design”.

3Moreover, according to [53], “Although the observed universe appears to be geometrically flat, it could have one of 18
global topologies. A constant-time slice of the spacetime manifold could be a torus, Mobius strip, Klein bottle, or others”.



ON NONSTANDARD VISUALIZATION 11

Pierre Berger provided two-dimensional illustrations for all Thurston geometries except twisted H2×R
in [3]. ”However, those visualizations are static images rather than real-time rendered, which makes them

difficult to interpret” [7], “it is not clear to me what structures are shown in the picture” [67]. Jeff Weeks

presented his visualizations of the isotropic and product spaces and planned to work on the remaining

geometries, see [60]. The paper [42] by Emil Molnár and David Papp is devoted to modelling Nil-geometry

in Euclidean space with software presentation.

“In comparison to two-dimensional non-Euclidean geometries, non-isotropic three-dimensional geome-

tries, Solv, Nil, and twisted H2 × R, are even more demanding to comprehend. Weeks [58] describes

the Solv geometry as “This is the real weirdo. [...] I don’t know any good intrinsic way to under-

stand it.”. Therefore, efficient visualization becomes a fundamental tool for gaining intuition about those

geometries....

As a result, while there are implementations of real-time first-person view for Euclidean, spherical,

hyperbolic spaces [24, 59], and for product spaces [60], real-time visualizations of geometries like Solv,

Nil or twisted H2 × R were absent until recently.” [7]

As far as we know, HyperRogue by ZenoRogue and based by their early work SolvView by MagmaM-

cFry [40] are the first interactive geodesic visualizations for Solv and Nil geometries, SolvView also deals

with the twisted hyperbolic geometry. The project was continued in [8].

The next step is to simulate the curved spaces in virtual realities and there are several related projects.

According to [47], “Researchers at the Geometry Center, already at that time realized the potential

of Virtual Reality for providing insights into the world of curved spaces. They created simple VR

installations to allow the user, not only to have a glimpse at the visual landscape inside a 3-manifold,

but also to experience the sensation of being immersed in such an environment. Two of their projects

are Mathenautics [16] and Alice [17]”. Also JReality [4], a Java based 3D scene graph package designed

for mathematical visualization at TU-Berlin, can be used for creating immersive views of 3-manifold.

“It is worth mentioning that being inside a curved space is far more intuitive than seeing it on a display.

For example, deformations are created when we rotate our head inside such spaces – this is due to their

non-isotropic nature. Also, walking in the space using the Euclidean coordinates shows how different

it is from the classic geometries. The Sol space, in particular, is surprising” [47]. On the other hand,

“Initial user testing suggests that people can navigate in hyperbolic virtual environments without major

disorientation and may navigate branching structures more intuitively than in Euclidean space” [30].

Sometimes we need to solve specific problems to simulate curved virtual reality. For instance, according

to [62], ”Virtual-reality simulations of curved space are most effective and most fun when presented as a

game (for example, curved-space billiards), so the user not only has something to see in the curved space,

but also has something fun to do there. However, such simulations encounter a geometrical problem:

they must track the player’s hands as well as her head, and in curved space the effects of holonomy would

quickly lead to violations of body coherence. That is, what the player sees with her eyes would disagree

with what she feels with her hands. This article presents a solution to the body coherence problem,

as well as several other questions that arise in interactive VR simulations in curved space”. Also Jeff

Weeks improved the exploration of curved spaces from [24], by presenting a framework that allows the

development of games [61, 63].

Thurston’s conjecture motivates the project “to develop accurate, real time, intrinsic, and mathemat-

ically useful illustrations of homogeneous (pseudo)-Riemannian spaces” [11], [12], see also [28], [24], [25],

[26], and [27]. Its realisation is quite successful, in [12] is reported: “We developed virtual reality software

whose aim is to simulate these eight geometries. We populate each of these spaces X with various objects

(spheres, planes, cylinders, lights, lattices, etc.) and compute what an observer would see if light follows

the geodesics of X. Using a virtual reality headset, the user can walk in these spaces and experience

their surprising properties”. For an other similar project, involving the ray tracing technology, see Ray
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VR [50], and works [39], [45], [46], and [47] by Djalma Lucio, Tiago Novello, Vińıcius Silva, and Luiz

Velho. In the latter paper the following perspectives to extend the ray tracing approach are discussed.

“This paper deals with mathematical visualization, however, in this same line there is the interest of

visualizing physical concepts. The four-dimensional space-time is one of these. Weiskopf [64] used ray

tracing to explore space-time by simulating travels faster than the light speed. Gröller [19] visualized

relativistic effects, the geometric behavior of nonlinear dynamical systems, and the movement of charged

particles in a force field (e.g., electron movement). Additionally, the website [10] presents some interesting

relativistic images. However, those visualizations are not in real-time. Approaching this problem using

our framework could be an interesting challenge. Another one is the visualization of spaces related to

string theory [5], especially the concepts of D-branes [34]”.

Moreover, some thinkers, for instance, Charles Howard Hinton (see [9] and [15]) (1853–1907) and Piotr

Uspenskiy (1878–1947) (see, for instance [55]) considered possibility of four-dimensional visualization.

Note that a few years ago was discovered that neural networks of our brains indeed have some potential

for it, because they can create structures in up to 11 dimensions, see [13]. Hinton argued that we can

develop a skill for four-dimensional visualization by freeing our imagination of objects of “elements of the

self”, related to our vision and location, in order to imagine the things as they are, for instance, to see

not only their surfaces but also inner points. This aim can be achieved by special imagination exercises.

“Hinton later introduced a system of coloured cubes by the study of which, he claimed, it was possible to

learn to visualise four-dimensional space [32]. Rumours subsequently arose that these cubes had driven

more than one hopeful person insane” [9]. Luckily, the second author is a mad scientist, so this scenario

fits to him. But now he is finishing a habilitation thesis under the guidance of the first author, and the

possible problem would decrease important statistical data for his institute. So we had to postpone the

project for a few of years.

Our contribution. Meantime, Bogdan Okhrimenko, under the supervision of the first author and

Iryna Novozhylova, wrote a Java program to help to produce four-dimensional visualisations of 1-skeletons

of four-dimensional regular convex polyhedra (see Fig. 9) [48]. The program provides projections of the

rotating polyhedron on two orthogonal planes in the four-dimensional space. If to each eye is given a

separate image (see Fig. 10) then they potentially can be joined to produce a four-dimensional image,

similarly to the well-known practice to see three-dimensional images.

In order to explain the approach from [48], we start from the three-dimensional case. From the times

of Euclid (III cent. BC) it is known that there are exactly five types of three-dimensional regular convex

polyhedra [2], known as Platonic solids:

Polyhedron Face Vertices Edges Faces

Tetrahedron triangle 4 6 4
Cube square 8 12 6
Octahedron triangle 6 12 8
Dodecahedron pentagon 20 30 12
Icosahedron triangle 12 30 20

Platonic solids can be realized in three-dimensional Euclidean space R3 by centering them at the origin

and providing the coordinates of their vertices and edges between them, for instance, as follows:

• for a tetrahedron we place its four vertices at the points (1, 1, 1), (−1,−1, 1), (−1, 1,−1), and

(1,−1,−1) and connect any two vertices by an edge iff the distance between them is 2
√

2;

• for a cube we place its eight vertices at the points (±1,±1,±1) and connect any two vertices by

an edge iff the distance between them is 2;
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Tetrahedron. Cube. Octahedron.

Dodecahedron. Icosahedron.

Figure 8. Platonic solids [65].

• for an octahedron we place its six vertices at the points (±1, 0, 0), (0,±1, 0), and (0, 0,±1) and

connect any two vertices by an edge iff the distance between them is
√

2.

Going now into the four-dimensional space, recall that by Schläfli theorem [2, 12.6.7], there are exactly

six types of four-dimensional regular convex polyhedra 4

Polyhedron Cell Vertices Edges Faces Cells

Pentachoron tetrahedron 5 10 10 5
Tesseract cube 16 32 24 8
Orthoplex tetrahedron 8 24 32 16
Octaplex octahedron 24 96 96 24
Dodecaplex dodecahedron 600 1200 720 120
Tetraplex tetrahedron 120 720 1200 600

4Note that more dimensions do not provide more types, because the theorem implies that for any n ≥ 5 there are only
three types of n-dimensional regular convex polyhedra, namely, the n-dimensional simplex, the n-dimensional cube, and its
dual, the n-dimensional cocube. These regular polyhedra are n-dimensional counterparts of the tetrahedron, the cube, and
the octahedron, respectively.
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Pentachoron. Tesseract.

Orthoplex. Octaplex.

Figure 9. 1-skeletons of the four-dimensional regular polyhedra [48].

Note that a pentachoron is a four-dimensional simplex, tesseract is also called a four-dimensional cube

or a hypercube, and an orthoplex is a dual polyhedron to a tesseract.

Similarly to Platonic solids, the four-dimensional regular convex polyhedra can be realized in four-

dimensional Euclidean space R4 by centering them at the origin and providing the coordinates of their

vertices and edges between them, for instance, as follows:

• for a pentachoron we place its five vertices at the points (−1,−1,−1, 1/
√

5),(−1, 1, 1, 1/
√

5),

(1,−1, 1, 1/
√

5), (1, 1,−1, 1/
√

5), and (0, 0, 0,−4/
√

5) and connect any two vertices by an edge iff

the distance between them is 2
√

2;

• for a tesseract we place its sixteen vertices at the points (±1,±1,±1,±1) and connect any two

vertices by an edge iff the distance between them is 2;

• for an orthoplex we place its eight vertices at the points (±1, 0, 0, 0), (0,±1, 0, 0), (0, 0,±1, 0) and

(0, 0, 0,±1) and connect any two vertices by an edge iff the distance between them is
√

2;

• for an octaplex we place its twenty four vertices at the points (±1,±1, 0, 0), (±1, 0,±1, 0),

(±1, 0, 0,±1), (0,±1,±1, 0), (0,±1, 0,±1), and (0, 0,±1,±1) and connect any two vertices by

an edge iff the distance between them is
√

2.

The program provides projections of the 1-skeleton of a given rotating polyhedron on two orthogonal

planes in the four-dimensional space. The colors of vertices allow to track their trajectories. Note that

for the centrally symmetric polyhedra (tesseract, orthopex, and octaplex), the antipodal vertices have

the same color. We set the size of the vertex projection depending on the distance from the vertex to

the plane to project.
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Figure 10. The projections of the rotated tesseract to the planes Oxy and Ozw [48].

The videos (in mkv format) of the rotating polyhedra can be downloaded via the following links:

Polyhedron Size URL

Pentachoron 18.2 MB mega.nz/file/RsBmRThB#OT43DF5W820zlR4D1Qgvg2Ys2fLaWjWGcgqd8CZORAY

Tesseract 21.7 MB mega.nz/file/ppJ03LTD#WemGYXiFRHG_Zw3AjVt0olx-kc1bZkrIYcDdxScUH_8

Orthoplex 14.2 MB mega.nz/file/F0RH0BCY#WCrG0c7-gWxUppfJOQ3rnWxWuYZuoQYwIcFMjzKXloc

Octaplex 19.6 MB mega.nz/file/lkJGya6S#5yvk1OmycQJBSULGkfmBK6H6nO7r0GKKP1UCjR7xUfc

Future work. Note that from philosophical point of view, the possibility of nonstandard visualization

refutes the Kantian teaching that three-dimensional Euclidean space is a priori format of our experience.

On the other hand there is the Buddhist teaching on shunyata, which is ”an infinitely open space or

background that allows for anything to appear, change, disappear, or reappear” [41]. Taking into ac-

count both this issue and visualization subtleness, we hope to involve to the project more experienced

contemplators from European branch 5 of Mind & Life Institute, founded by “Tenzin Gyatso, the 14th

Dalai Lama–the spiritual leader of the Tibetan people and a global advocate for compassion; Francisco

Varela, a scientist and philosopher; and Adam Engle, a lawyer and entrepreneur”, which “bring science

and contemplative wisdom together to better understand the mind and create positive change in the

world”. The joint project can be especially interesting because we think that, according to Tibetan

Buddhism, nonstandard visualisation experience can help a person to attain liberation, see the appendix

for details.

Acknowledgments. The authors thank to Sara Di Bartolomeo for informing them on alt.VIS work-

shop, to Volodymyr Pelykh for pointing them the papers [13] and [53], and to Ivan Hetman for pointing

them the game HyperRogue.

Appendix: Nonstandard visions in Tibetan Buddhism

Dzongsar Jamyang Khyentse in [33] says that traditionally, Tibetans rely on the instructions that ap-

pear in Karma Lingpa’s “Great Liberation through Hearing in the Bardo”, the “Bardo Tödrol Chenmo”,

more known at the West as“The Tibetan Book of the Dead”, see also [37] and [52]. Unfortunately, after

the paper was accepted, we found that the author of [52], Sogyal Rinpoche, is accused of immorality

(see, for instance, [29]). So, although there still is a hope that the quotations from [52] below conform to

Tibetan Buddhism, please be careful reading them.

In particular, a dying person at some phase is instructed as follows, see [33, The Painful Bardo of

Dying: Dharmakaya]:

“The infinite rainbow-like colours and shapes that now surround you

Are unlike anything you have ever seen before.

5See mindandlife-europe.org.

mega.nz/file/RsBmRThB#OT43DF5W820zlR4D1Qgvg2Ys2fLaWjWGcgqd8CZORAY
mega.nz/file/ppJ03LTD#WemGYXiFRHG_Zw3AjVt0olx-kc1bZkrIYcDdxScUH_8
mega.nz/file/F0RH0BCY#WCrG0c7-gWxUppfJOQ3rnWxWuYZuoQYwIcFMjzKXloc
mega.nz/file/lkJGya6S#5yvk1OmycQJBSULGkfmBK6H6nO7r0GKKP1UCjR7xUfc
mindandlife-europe.org
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The blueness of the blue,

The greenness of the green,

The redness of the red

Are unimaginably intense and alive.

Because you are no longer limited by the filter of your eyes

You are able to perceive all the unnamed colours

That were invisible to you while you were alive.

...

You can see some familiar shapes,

Like squares, triangles and semi-circles,

But most are completely unfamiliar to you;

You never imagined that such shapes exist.

...

Everything feels intense and raw

Because you no longer perceive

Using the filters of your body’s sense organs,

Or your imagination.

There is nothing between you and the object you are experiencing.

...

Do not be afraid of the colours and shapes,

Or of how intensely you perceive them.

They are nothing more than the expression of your mind ...

Nothing you see and experience is ‘out there’,

It is all the radiant display of mind.

...

Do not be afraid.

There is no need to panic.

You will now faint.

O, Son or Daughter of Noble Family,...

[name of dying person],

This is the Buddha!

...

Do not be afraid!

Do not contrive!

This is the Buddha;

This is the real you!

You are not [name of dying person].

You are Buddha,

Face it!

Dwell in your true nature!

You are Buddha,

Do not shy away from your buddha nature!

This is it!
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Do not try to run away from this state!

Relax and dwell right here”.

Sogyal Rinpoche in [52, Bardos and Other Realities] explains:

”The reason the moment of death is so potent with opportunity is because it is then that the funda-

mental nature of mind, the Ground Luminosity or Clear Light, will naturally manifest, and in a vast and

splendid way. If at this crucial moment we can recognize the Ground Luminosity, the teachings tell us,

we will attain liberation. This is not, however, possible unless you have become acquainted and really

familiar with the nature of mind in your lifetime through spiritual practice.

And this is why, rather surprisingly, it is said in our tradition that a person who is liberated at the

moment of death is considered to be liberated in this lifetime, and not in one of the bardo states after

death; for it is within this lifetime that the essential recognition of the Clear Light has taken place and

been established. This is a crucial point to understand”.

Then Sogyal Rinpoche argues that a person has to be prepared to the moment of death during the

lifetime, by acquiring the similar experience to be acquainted with it. Dzongsar Jamyang Khyentse

explains: “Most of us prefer to stick to what we are used to. Although the emotions we habitually

experience can be agonizingly painful, they are also comfortingly familiar. More often than not, we

would rather experience the pain we know than nothing at all – mind is so masochistic. This is why the

‘referencelessness’ we experience once our bodies are dead is so unbearable... we feel far more comfortable

with the less intimidating, not-too-bright and not-too-extraordinary colours, figures and shapes that we

now see, and why we long to cosy up to them”. Note that the nonstandard visualisation experience

makes exotic shapes familiar and so more attractive.

Sogyal Rinpoche notes that at the moment of death “is a very special state of luminosity or Clear

Light called, as I have said, the “bardo of dharmata.” This is an experience that occurs for everyone, but

there are very few who can even notice it, let alone experience it completely, as it can only be recognized

by a trained practitioner. This bardo of dharmata corresponds to the period after falling asleep and

before dreams begin”. The second author confirms that he indeed sometimes sees some surrealistic and

transforming shapes while he is falling asleep.

The above suggests that the nonstandard visualisation experience can help a person to attain liberation.
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Swart, Carl H. Séquin, Kristóf Fenyvesi, 41–40, Phoenix, AZ: Tesselations Publishing, archive.bridgesmathart.org/

2017/bridges2017-41.pdf.
[26] Vi Hart, Andrea Hawksley, Elisabetta A. Matsumoto, Henry Segerman, Non-euclidean virtual reality, The talk at
Bridges 2017, youtube.com/watch?v=72SGtw5ca1c.

[27] Vi Hart, Andrea Hawksley, Elisabetta A. Matsumoto, Henry Segerman, Non-euclidean virtual reality, 2017, youtube.
com/watch?v=ztsi0CLxmjw

[28] Vi Hart, Andrea Hawksley, Henry Segerman, Marc ten Bosch, Hypernom: Mapping VR headset orientation to S3, In
Proceedings of Bridges 2015: Mathematics, Art, Music, Architecture, Culture, 387–390, Tesselations Publishing, archive.
bridgesmathart.org/2015/bridges2015-387.pdf.

[29] Oliver Harvey, The bad Buddha: Dark side of celeb guru Sogyal Rinpoche who ’sexually abused’ the beau-
tiful young women dubbed his ’Dakinis’, The Sun (UK edition), 22 Sep 2018, thesun.co.uk/news/7319165/

celeb-guru-sogyal-rinpoche-sexually-abused-women-dubbed-dakinis.
[30] Nico Hawthorne, Ocean Hurd, Sri Kurniawan, Vincent Adelizzi Pisani, Navigation by Walking In Hyperbolic Space Using
Virtual Reality, In Extended Abstracts of the Annual Symposium on Computer-Human Interaction in Play Companion
Extended Abstracts, CHI PLAY’19, October 22–25, 2019, Barcelona, Spain, doi:10.1145/3341215.3356287.

[31] Linda Dalrymple Henderson, The Fourth Dimension and Non-Euclidean Geometry in Modern Art, Rev. ed., Princeton,
NJ: Princeton University Press 2012.

[32] Charles Howard Hinton, Casting out the Self, 1904.
[33] Dzongsar Jamyang Khyentse, Living is Dying: How to Prepare for Dying, Death and Beyond, siddharthasintent.

org/publications/living-is-dying.
[34] C.V. Johnson, D-branes, Cambridge university press 2002.
[35] John Lamping, Peter Pirolli, Ramana Rao, A Focus+Context Technique Based on Hyperbolic Geometry for Visualizing
Large Hierarchies, In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’95, 401–408,
New York, NY:ACM Press/Addison-Wesley Publishing Co. 1995, doi:10.1145/223904.223956.

[36] John Lamping, Ramana Rao, The Hyperbolic Browser: A Focus+Context Technique for Visualizing Large Hierarchies,
Journal of Visual Languages & Computing (1996) 7:1 33–55, doi:10.1006/jvlc.1996.0003.

[37] Karma Lingpa, The Tibetan Book of the Dead, London 1927 (Russian translation, SPb.: Chernyshev publ. 1992).
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[65] Wikipedia, Platonic solid, en.wikipedia.org/wiki/Platonic_solid.
[66] Zeno Rogue, HyperRogue, roguetemple.com/z/hyper.
[67] Zeno Rogue, HyperRogue - Experiments with geometry, roguetemple.com/z/hyper/geoms.php.
[68] Zeno Rogue, HyperRogue - Models of hyperbolic geometry, roguetemple.com/z/hyper/models.php.

Taras Banakh: Ivan Franko National University of Lviv (Ukraine), and Jan Kochanowski University in
Kielce (Poland)

Email address: t.o.banakh@gmail.com

Alex Ravsky: Pidstryhach Institute for Applied Problems of Mechanics and Mathematics National Acad-
emy of Sciences of Ukraine

Email address: alexander.ravsky@uni-wuerzburg.de

https://doi.org/10.25596/jalc-2014-201
graphics.stanford.edu/papers/h3
arxiv.org/abs/1511.02851
visgraf.impa.br/Data/RefBib/PS_PDF/gi2020/gi2020.pdf
visgraf.impa.br/Data/RefBib/PS_PDF/gi2020/gi2020.pdf
visgraf.impa.br/ray-vr/?page_id=252
visgraf.impa.br/ray-vr/?page_id=252
visgraf.impa.br/Data/RefBib/PS_PDF/cag2020a/Visualization_of_Nil_Sol_SL2_CAG.pdf
visgraf.impa.br/ray-vr
archive.bridgesmathart.org/2012/bridges2012-103.pdf
archive.bridgesmathart.org/2012/bridges2012-103.pdf
arxiv.org/abs/gr-qc/0610051
caida.org/catalog/software/walrus
geometrygames.org/CurvedSpaces
books.google.com.br/books?id=Lurp6nB4LtQC
https://doi.org/10.1109/MCG.2002.1046633
https://doi.org/10.1007/0-387-29555-0_15
https://doi.org/10.1007/0-387-29555-0_15
archive.bridgesmathart.org/2020/bridges2020-1.pdf
arxiv.org/abs/2011.00510
en.wikipedia.org/wiki/Platonic_solid
roguetemple.com/z/hyper
roguetemple.com/z/hyper/geoms.php
roguetemple.com/z/hyper/models.php

	Appendix: Nonstandard visions in Tibetan Buddhism
	References

